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Settling of the equilibriumsbarometricd distribution of colloidal grains in a liquid requires a very long time
in comparison with that necessary for temperature equilibrium establishment. This mismatch enables different
scenarios for the onset of thermal convection. If the stratified state has had no time to be settled, the colloid
behaves as a pure fluid where only stationary convection arises. On the contrary, if the barometric concentra-
tion profile has been reached before the temperature gradient is imposed, only oscillatory convection occurs.
Thereafter, the oscillations last as long as it takes the convection to wash away the initial concentration profile.
Then the fluid becomes homogeneous and stationary convection is eventually established. The influence of the
Soret effect upon the onset of convection is also taken into account and discussed.
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Since the middle of the 1980s convection in binary fluid
mixtures has been the subject of extensive research. A vari-
ety of bifurcation phenomena and convective states with dif-
ferent structural and temporal properties have been displayed
in many theoreticalf1–5g and experimentalf6–10g works.
The experiments were carried out with truesmoleculard so-
lutions such as water-ethanol and water-methanol mixtures
where the coupling between the fields of velocity, tempera-
ture, and concentration is provided by the Soret effect, which
is the mechanism by means of which an externally imposed
temperature gradient causes a certain concentration gradient.

Colloidal solutions significantly differ from molecular
ones. The size of ions or/and molecules dissolved in true
solutions never exceeds 1 nm while colloidal grains are ap-
proximately in the range from 10 to 100 nm. The grains are
still too small to settle out of solution due to gravity but they
are large enough to form a gravity induced concentration
profile fszd—a Boltzmannsbarometricd particle distribution
with a marked vertical gradient. Thus, the colloid proves to
be stratified even in the absence of the Soret effect.

Another important distinction between colloidal and true
solutions is also due to the difference in the sizes of the
dispersed particles. According to the Einstein formula, the
diffusion coefficient of particles is inversely proportional to
their diameterd:

D = kBT/s3phdd, s1d

whereh is the fluid viscosity. Hence, as colloidal grains are
about 100 times the molecule sizeswe are here not dealing
with polymer solutionsd, the characteristic diffusion time in
colloids tD,D−1 is about 100 times longer than that in true
solutions. As a consequence, this mass-diffusion time ap-
pears to be 10 000 times longer than the temperature-

diffusion timetT during which an imposed temperature gra-
dient settlessfor true solutions the ratiotD /tT does not
exceed 100d.

The great difference betweentD andtT enables different
scenarios of convection onset in colloids. Actually, one can
excite convectionbefore any concentration stratification is
settled, and then the colloid behaves as a puresi.e., single-
componentd liquid, where only stationary instability occurs.
Otherwise, a supercritical temperature difference can be ap-
plied to the layer after the establishment of the barometric
distribution. As will be shown below, in this case only oscil-
latory instability arises. The oscillatory convection washes
out the initial concentration profile thereby eliminating the
very reason for oscillations. Thus, in the long run, stationary
convection sets in.

Let a suspension of grains of diameterd and densityrs in
a carrier liquid of densityr f fill up a horizontal layer. The
equilibrium concentration of grains in the gravity field obeys
the barometric formula

fszd = f̄e−z/l, l = kBT/sDrVgd, s2d

where l stands for thesedimentation length, f̄ is the mean
volume fraction of the grains,Dr=rs−r f, V is the particle
volume, g is the gravity acceleration, and thez axis is di-
rected upward. All estimates will be carried out for a water-
based suspension of silicasrs=2.255 g/cm3, d=22 nmd
used earlier inf11g. The data yield the spatial scale of sedi-
mentationl .60 mm. For the layer of thicknessh=2 mm the
ratio h/ l is sufficiently small to allow replacement of the
barometric distributions2d by the linear relationshipfszd
. f̄s1−z/ ld, so the concentration gradient across the layer is
almost constant:

df/dz. − f̄/l . s3d

fFor solutions of molecules with diameterdø1 nm one has
l ,1 km; thus the gradients3d is negligible.g

In the case ofh! l the characteristic mass-diffusion time
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is tD.h2/ sp2Dd f12g. Substituting fromf11g the measured
value D=2.2310−7 cm2/s and h=2 mm gives tD<5 h,
while the temperature-diffusion timetT.h2/ sp2kd on sub-
stitution of the coefficient of temperature diffusivityk
=1.48310−3 cm2/s hardly reaches 3 s. Thus, the equilib-
rium temperature gradientdT/dz=−DT/h settles about 6000
times faster than the concentration gradients3d.

The convection in colloids is described by the set of equa-
tions for the fluid velocityv, pressurep, temperatureu

−sDT/hdz, and concentrationw−sf̄ / ldz:

dv/dt = ¹2v + su − wde− = p, s4d

Pdu/dt = ¹2u + Rsv ·ed, s5d

Pdw/dt = Lf¹2w + r−1]w/]zg + Bsv ·ed, s6d

whered/dt=] /]t+P−1sv ·¹ d, r = l /h, and the unit vectore is
aligned with thez axis. The dimensionless equations contain
two material parameters, the Lewis number L=D /k and the
Prandtl number P=n /k sheren is the kinematic viscosityd,
and two control parameters

R =
agDTh3

nk
, B =

bgf̄h4

nkl
, s7d

which are the Rayleigh number and what we call the Boltz-
mann sor barometricd number; a=−r−1s]r /]Td and b
=r−1s]r /]fd are coefficients of thermal and solutal expan-
sion. Units of length, time, velocity, temperature, and con-
centration areh, h2/n, k /h, nk /agh3, andnk /bgh3, respec-
tively. In these units, the gradients of temperature and
concentrations3d in the steady state look like

dT/dz= − R, df/dz= − B. s8d

Let us perform a linear stability analysis of the steady
state. Assuming the dependence of small perturbations on
time and horizontal coordinates to be expfivt+ iskxx+kyydg,
we reduce the set of equationss4d–s6d to

sD2 − k2dsD2 − k2 − ivdv − k2su − wd = 0, s9d

sD2 − k2 − ivPdu + Rv = 0, s10d

LsD2 − k2 + D/rdw − ivPw + Bv = 0, s11d

where D=d/dz, v=sv ·ed is the vertical component of veloc-
ity, and k2=kx

2+ky
2. The solutions of these equations should

satisfy the boundary conditions on the confining rigid imper-
vious planesz= ±1/2:

v = Dv = u = Dw + w/r = 0. s12d

Some critical parameter values obtained from the numerical
solution of the eigenproblems9d–s12d are presented in Table
I. For calculations, we have taken the material constants of a
suspension earlier used inf11g: L=0.000 15, P=5.5, andr
=30.

As was shown above, the particle diffusion plays the de-
cisive role in forming the equilibrium concentration profile.
Nonetheless, dealing with the convection excitation, one can

omit the underlined diffusion term in Eq.s11d because of the
smallness of the Lewis number. The Lewis number repre-
sents none other than the ratiotT/tD, and its smallness illus-
trates the fact that the diffusion process does not manage to
alter the particle distribution during the development of con-
vection: it has simply no time to do that. The remaining part
of Eq. s11d, ivPw=Bv, allows us to eliminatew from Eq.s9d,
and thus the set of equationss9d–s11d reduces to

fivPsD2 − k2d2 + v2PsD2 − k2d + k2Bgv − ivPk2u = 0,

Rv + sD2 − k2 − ivPdu = 0. s13d

For the case of so-calledfree boundaries, the equations
admit an exact solution of the kindv,u~cosp. This ansatz
leads to a dispersion relation for the frequency of neutral
scriticald oscillationsv:

ivPfv2Psp2 + k2d + k2sR − Bd − sp2 + k2d3g

+ v2PsP + 1dsp2 + k2d2 = k2sp2 + k2dB. s14d

It can be seen that thestationary instability sv=0d occurs
only if B=0, i.e., when the concentration gradients8d has
had no time to be formed. Then Eq.s14d has the well-known
solution Rstskd with the minimum R0 at k=k0:

Rst =
sp2 + k2d3

k2 , R0 =
27p4

4
, k0 =

p

Î2
.

Otherwise, i.e., if the concentration gradient has been
formed, only theoscillatory instability occurs:

Rosc=
sp2 + k2d3

k2 +
PB

P + 1
,

v2 =
k2B

PsP + 1dsp2 + k2d
, s15d

or, after minimization of R overk,

Rc
osc= R0 +

PB

P + 1
, vc

2 =
B

3PsP + 1d
. s16d

The mechanism of convective oscillations can be illus-
trated in the following way. Consider a small perturbation of
the steady states8d resulting in a displacement of an element
of the suspension’s volume upward. As long as the element
rises, it loses both momentumsdue to viscosityd and warmth
sdue to thermal conductivityd but maintains the number of
grains since the diffusion is negligible. The motion upward
stops when the element reaches a position in which it is
surrounded by fluid of the same density: the fluid is cooler

TABLE I. Critical parameters for the Prandtl number P=5.5 and
some values of the Boltzmann number B.

f̄ s%d B Rc kc vc DTc sKd Tc ssd

0 0 1708 3.117 0 8.7

1.5 399 2079 3.136 1.675 10.6 18.4

3 783 2437 3.156 2.360 12.4 13.1
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but less concentrated in heavy grains than the element is. So
in the new position the element is still warmer than its sur-
roundings and hence it continues to cool down. As a result, it
becomes heavy—because of its heightened concentration—
than the surroundings, and then it begins to sink. Thus, the
gradient of concentrations8d gives rise to arestoring force;
therefore perturbations are oscillatory. Their subsequent fate
depends on the Rayleigh number: the oscillations die out if
R,Rc

osc and continue to grow at R.Rc
osc.

For real boundary conditionss12d on the confining rigid
planes the pair of equationss13d can be easily solved by the
Galerkin method. The simplest Galerkin approximation sat-
isfying the conditionss12d has the formf13g

v = v0Sz2 −
1

4
D2

, u = u0Sz2 −
1

4
D . s17d

This leads to the dispersion relation for the frequencyv of
neutral oscillations:

ivPFv2Psf1 + 2d +
27

28
k2R − k2B − f1f2G + v2Pf3 = k2f1B,

s18d

where we introduced thek-dependent functions

f1 = 10 +k2, f2 = 504 + 24k2 + k4, f3 = f1sf1 + 2d + Pf2.

In the absence of the concentration gradientsB=0d, Eq. s18d
predicts a stationary convective instability at

Rst = 28f1f2/s27k2d. s19d

If the concentration equilibrium settledbefore imposing
the temperature gradient, then only theoscillatory instability
arises. In this case Eq.s18d gives

Rosc=
28f2

27
S f1

k2 +
PB

f3
D, v2 =

k2f1

Pf3
B. s20d

Minimization of Rst and Rosc over k yields the approximate
critical values of R,k, and v. The relative error of those
estimates with respect to the exact values presented in Table
I does not exceed 2.5%. For instance, in the case of B=0 our
Galerkin approximation s17d gives Rc

st;R0=1750, kc
=3.116 instead of R0=1708, kc=3.117. Thus the solutions
obtained for L=0.000 15 and 0 practically coincide. In the
two last columns of Table I there are adduced dimensional
estimates for the critical temperature differenceDTc and the
period of neutral oscillationsTc obtained for the layer thick-
nessh=2 mm and the unit of timeh2/n=4.91 sswe take the
kinematic viscosity coefficientn=8.15310−3 cm2/s f11gd.

The critical Rayleigh number for oscillatory instability is
always higher than that for stationary instability—cf. Eqs.
s19d and s20d. Therefore, after some oscillations, when the
initial concentration profile is washed away by convection,
the stationary finite-amplitude convection is eventually
settled. This prediction is confirmed by the numerical solu-
tion of nonlinear equationss4d–s6d with the boundary condi-
tions s12d. Numerical results are presented in Fig. 1. The
calculations were performed for the mean particle concentra-
tion f̄=1.5% sthe volume fractiond, and B=399 if the baro-

metric distribution has been formed, or B=0 if the equilib-
rium stratification has had no time to settle. In the latter case,
the colloid behaves like a pure fluid where the stationary
convection sets in atR.Rc

st=1708. In the former case, i.e.,
when the colloidal solution was preliminarily stratified by
gravity, there occurs oscillatory convection at R.Rc

osc

=2079; no subcritical oscillations have been detected.
Evolution of the stream functionCstd in the center of a

convective roll is shown in Fig. 1. As is seen from the figure,
the evolution depends on the excess of R over Rc

osc: super-
criticality is defined asD=sR/Rc

oscd−1. The higherD the
sooner oscillatory convection washes away the initial con-
centration profile removing thereby the reason for the oscil-
lations. As a result, the oscillatory regime of convection
changes into the stationary one: both the amplitude and fre-
quency of oscillations decrease with time, and the function
Cstd coincides finally with the stationary solution taken for
the case of a nonstratified colloidsB=0d.

FIG. 1. Evolution of stream functionCstd after the onset of
convection in homogeneoussB=0d and stratifiedsB=399d colloids.
ExcessD of Rayleigh number over its critical value issad 13%, sbd
19%, andscd 25%.
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There is still a very narrow intervalDv where the oscilla-
tory instability produces undamped supercritical oscillations
so weak that they do not destroy the concentration profile
completely. sSuch oscillations were observed for the first
time f14g in water-ethanol mixtures with L,10−2 stratified
by the Soret effect.d The width of Dv can be estimated as
follows. Mixing occurs only when there is relative motion
between various parts of the colloid. Hence, the mixing rate
ġ should depend on the space derivatives of the fluid veloc-
ity. Near the convection threshold, the velocity and its gra-
dients ]vi /]xk are small, soġ is supposed to be a linear
function of the gradients:ġ,]v /]x,kc

2Cmax. Substituting
here Cmax.akÎDv and kc.p /h gives ġ,p2aÎDvsk /h2d.
Undamped oscillations exist if the concentration profile is
restored by diffusion faster than itsthe profiled is destroyed
under convection. SincetD.h2/ sp2Dd, one gets ġtD

,sa/LdÎDv so the last inequality reduces toDv&L2/a2.
The amplitudea of the pattern depends on the Prandtl num-
ber ssee f15gd. For the roll pattern and P=5.5 one getsa
=0.846. Thus, for L,10−4 the intervalDv is negligible.

Figure 2 presents the streamlines, isotherms, and concen-
tration isolines in 9.5 units of time after imposing the tem-
perature difference corresponding to R=2640. It is seen that
the streamlines and isotherms aresmoothwhile the field of
concentration looksdisordered. This difference can be ex-
plained by the fact of a very large mismatch in diffusion
coefficients in the equations of velocity and temperature, on
the one hand, and concentration, on the other hand. Actually,
small vortices and localized temperature perturbations rap-
idly disappear owing to the diffusion of velocitysthe viscous
term n¹2v in the equation of fluid motiond and temperature
sthe termk¹2T in the thermal conductivity equationd, while
the mass-diffusion termD¹2f in the diffusion equation is
negligible. Therefore, even small islets of increased and de-
creased concentration do not dissolve due to diffusion but
only spread by convection.

The pictures shown in Fig. 3 present a succession of snap-
shots of concentration isolines at a certain time after impos-
ing the temperature difference on the fluid layer. They illus-
trate how the field of concentration is breaking into small
pieces and then becoming more and more fragmentary.

Let us take into consideration the Soret effect. The flux
density of the matter,

j = fu − Ds=f + S= Td, s21d

consists of the diffusion part caused by concentration and
temperature gradientssS is the Soret coefficientd, and the
regular flux provided by the particle sedimentation under
gravity. The Archimedean forceDrVg and the Stokes drag
coefficient 3phd determine the downfall velocity of the par-
ticle in the liquid:

u = DrVg/s3phdd = − sD/lde; s22d

we have used definitionss1d ands2d for the diffusion coeffi-
cient D and the sedimentation lengthl. Substitutingu from
Eq. s22d into Eq. s21d gives

j = − Df=f + S= T + sf/ldeg. s23d

Here the first two terms describe the diffusion and thermo-

diffusion fluxes, while the third term may be treated as a
barodiffusionflux f16g: −Dsf / lde=Dsf /pd¹p.

If the steady statesj =0d has been formed in the presence
of a temperature gradientdT/dz=−DT/h, the equilibrium
value of the concentration gradient is

df

dz
= S

DT

h
−

f

l
.

So, in the dimensionless form, instead of Eq.s8d one gets

df/dz= cR − B, s24d

wherec=sb /adS is theseparation ratio. For colloidal solu-

tions used inf11g, this value is negativesc.−4 at f̄
=1.5%d, while the Boltzmann number is always positive. In
fact, substitutingl from Eq. s2d and b=Dr /r into the defi-
nition s7d yields

FIG. 2. Streamlinessad, isothermssbd, and lines of constant
concentrationscd for R=2640 and B=399 at the momentt=9.5.

M. I. SHLIOMIS AND B. L. SMORODIN PHYSICAL REVIEW E71, 036312s2005d

036312-4



B =
sDrf̄gd2h4

hkn̄kBT
. 0,

wheren̄ is the mean number density of colloidal grains. Re-
placing B in Eq.s18d by sB−cRd, we arrive at the dispersion
relation

ivPFv2Psf1 + 2d +
27

28
k2R − k2sB − cRd − f1f2G + v2Pf3

= k2f1sB − cRd. s25d

Interestingly, in contrast to Eq.s18d which has a stationary
solution only if B=0, Eq.s25d has such a solution for any
nonzero B value:

Rst = B/c. s26d

More precisely, restoring the diffusion term in Eq.s11d, in-
stead of Eq.s26d we obtain

Rst = FB +
10

7
Ls504 + 24k2 + k4dG/c.

This function has the minimum Rc
st=sB+720Ld /c in the

long-wavelength limitk=0. For L,10−4, however, the term
720L does not exceed 0.1 and hence is negligible compared
to any reasonable value of B. Thus Eq.s26d describes two
branches of the stationary Soret instability shown in Fig. 4,
one of which corresponds to positive values ofc and R, and
the other fits their negative values. The dispersion relation
s25d also determines the oscillatory Rayleigh instability:

Rosc=
28f2sf1f3 + k2PBd
k2s27f3 + 28cPf2d

,

v2 =
f1s27k2B − 28cf1f2d

27f3 + 28cPf2
. s27d

Putting here v=0 we find the coordinates of the
codimension-2 pointwhere the marginal curve of oscillatory

FIG. 3. Evolution of the concentration field for B=399 and R
=2350sthe supercriticalityD=13%d.

FIG. 4. Stability diagram in thesR,cd plane for B=399. Oscil-
latory marginal stability, solid line; stationary Soret instability,
dashed lines; frequency of neutral oscillations3300, dash-dotted
line; P, codimension-2 point.
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instability s27d branches from the curve of stationary insta-
bility s26d: cc2=B/R0, Rc2=R0 ssee Fig. 4d. So, for B=399
one hascc2=399/1708.0.234.

The above estimates were made for colloids earlier used
by Cerbinoet al. f11g. We dare say the authors could have
observed the oscillatory instability predicted in the present
work if they had set themselves it as an object. However,
they studied quite another convective problem. They pre-
pared no steady state but imposed abruptly on the fluid layer
a very strong heating from above. Then the concentration
gradient induced by the negative Soret effect extends from
the layer boundaries into the entire fluid asf13g

]f

]z
= cRF1 − erfS z

2ÎLt
DG ,

where erfs·d is the error function. Thus, over a certain time
the concentration gradient is located within the diffusion skin
layer d,ÎLt near the confined solid surfaces. During this
time the characteristic length scale isd instead of the layer
depthh, and hence the effective Rayleigh number grows pro-
portionally to t3/2 as time goes on. As a result, the fluid
velocity rapidly grows too and mixes the concentration,
eliminating thereby the driving force of the Soret convection.
The latter leads to a rapid damping of the motion, but then
the concentration gradient is formed again and the process is
repeated. A period of these self-sustained oscillations was
estimated inf13g, and the estimates were corroborated before
long by experimentsf11g. It is clear that there is a certain
qualitative likeness between our problem and that of Cerbino
et al. f11g. Nonetheless our predictions and their experimen-
tal results surely cannot be compared.

To summarize, the onset of convection in colloids de-
pends on the way in which the initial steady state is prepared.
Actually, depending on thetiming in the temperature appli-
cation, three scenarios are possible. If a supercritical tem-
perature differenceDT.DTc is applied to the fluid layer

before establishing the barometric particle distribution, the
colloid behaves as a pure liquid; thus stationary convection
sets in. Contrarily, ifDT is applied after stratifying the col-
loid by gravity, oscillatory instability occurs.

We should note the high sensitivity of the transient stage
of convection in colloids to dissolved matter. In fact, accord-
ing to our theory even negligible amounts of suspended
grains may induce serious consequences. For example, add-
ing only 0.2 vol % of silica grains into water provides a Bolt-
zmann number B.54 that leads to oscillatory instability
with frequencyv.0.62 sfor a fluid layer of 2 mm in thick-
ness this dimensionless frequency corresponds to the period
of convective oscillationsT.50 sd. The instability occurs at
Rc

osc.1760, exceeding the threshold of the stationary insta-
bility R0=1708 by 3%.

The last scenario implies that the subcritical temperature
differenceDT,DTc is imposed from the very beginning and
then increases gradually in order to build the concentration
profile undisturbed by convection. In this case the profile is
formed under the action of both gravity and the Soret effect;
thus the character of the instability—stationary or
oscillatory—proves to be dependent on the correlation be-
tween the Boltzmann number and the separation ratio.

Anyway, oscillatory convection lasts as long as it takes
the convective motion to wash away the initial concentration
profile. Then the fluid becomes homogeneous and stationary
convection is eventually established. As we demonstrated,
the more the Rayleigh number exceeds its critical value for
oscillatory instability—and hence the higher the amplitude of
convective oscillations—the sooner stationary supersedes os-
cillatory convection.
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